Metric System Conversions

Mass ($\mathrm{g}=$ gram)

Distance or Length ($m=$ metre)

Area $\left(\mathrm{m}^{2}=\right.$ square metre $)$

Volume ($\mathrm{m}^{3}=$ cubic metre)

volume vs capacity
$1 \mathrm{~m}^{3}=1 \mathrm{kl}$
$1 \mathrm{dm}^{3}=11$
$1 \mathrm{~cm}^{3}=1 \mathrm{ml}$

6.1- A- Areas of Prisms and Cylinders

For every solid we can find two types of areas:

- Lateral area $\left(A_{L}\right)$: area of lateral faces-no base(s)
- Total area $\left(\mathrm{A}_{\mathrm{T}}\right)$: area of lateral faces and base(s)

Formulas:

	A_{L} (Lateral Area)	$\mathrm{A}_{\mathrm{T}}=\mathrm{A}_{\mathrm{L}}+2 \mathrm{~A}_{\mathrm{b}}$ (Total Area)
Cubes	$4 \mathrm{w}^{2}$	$6 \mathrm{w}^{2}$
Prisms	$\mathrm{P}_{\mathrm{b}} \mathrm{h}$	$\mathrm{P}_{\mathrm{b}} \mathrm{h}+2 \mathrm{~A}_{\mathrm{b}}$
Cylinders	$2 \pi r h$ or $\pi d h$	$2 \pi r h+2 \pi r^{2}$

	A_{L} (Lateral Area)	$A_{T}=A_{L}+2 A_{b}$ (Area total)
Cubes	$4 w^{2}$	$6 w^{2}$

Ex 1: Find the total area

	A_{L} (Lateral Area)	$A_{T}=A_{L}+2 A_{b}$ (Area total)
Cylinders	$2 \pi \mathrm{rh}$ or $\pi \mathrm{dh}$	$2 \pi \mathrm{rh}+2 \pi r^{2}$

Ex 3: P. 181 \# 14b)

If $\mathrm{d}=5.4 \mathrm{~cm}$
Then $\mathrm{r}=2.7 \mathrm{~cm}$

Practice: page 178 \# 5,8,9,10 page 181 \# 14

	A_{L} (Lateral Area)	$A_{T}=A_{L}+2 A_{b}$ (Area total)
	$P_{b} h$	$P_{b} h+2 A_{b}$

Ex 4: Find the total surface area of this prism
$A_{T}=P_{b} h+2 A_{b}$

	A_{L} (Lateral Area)	$A_{T}=A_{L}+2 A_{b}$ (Area total)
Cylinders	$2 \pi r h$ or $\pi \mathrm{dh}$	$2 \pi r h+2 \pi r^{2}$

Do and Hand in:
Ex 5: Find the total surface area of the cylinder

page 179 \# 11,13 page 181 \# 15,16,17

6.1- B- Pyramids

Formula:

	A_{L} (Lateral Area)	$\mathrm{A}_{\mathrm{T}}=\mathrm{A}_{\mathrm{L}}+\mathrm{A}_{\mathrm{b}}$ (Area total)
Pyramid	$\frac{P_{b} s}{2}$	$\frac{P_{b} s}{2}+\mathrm{A}_{\mathrm{b}}$

Ex 2: P. 182 \# 18c)

Practice:
page 182 \# 18, 20, 21, 23,24,25

	A_{L} (Lateral Area)	$A_{T}=A_{L}+A_{b}$ $(A r e a ~ t o t a l)$
Pyramid	$\frac{P_{b} s}{2}$	$\frac{P_{b} s}{2}+A_{b}$

Ex 3: P. 182 \# $22 \quad A_{T}=A_{\text {LBIG PYR }}-A_{\text {LSmall pyr }}+A_{\text {upper base }}$

6.1 -C- Cones

Formula:

	A_{L} (Lateral Area)	$\mathrm{A}_{\mathrm{T}}=\mathrm{A}_{\mathrm{L}}+\mathrm{A}_{\mathrm{b}}$ (Area total)
Cone	$\pi r s$	$\pi r s+\pi r^{2}$

| A_{L} |
| :---: | :--- | :--- |
| (Lateral Area) |\quad| $A_{\mathrm{T}}=A_{\mathrm{L}}+A_{\mathrm{b}}$ |
| :--- |
| $($ Area total $)$ |

Ex 2: page 185 \# 36

Practice: page 184 \# 26 to 30

6.1 -D- Spheres

- Formulas:

	A_{L} (Lateral Area)	$A_{T}=A_{L}+A_{b}$ (Only hemispheres have a base)
Spheres	$4 \pi r^{2}$	
Hemispheres	$2 \pi r^{2}$	$3 \pi r^{2}$

$A_{L}=A_{T}$ Sphere (Lateral Area)
$4 \pi r^{2}$

$A_{T}=A_{L}+A_{b}$

(only hemispheres have a base) $2 \pi r^{2}+\pi r^{2}$

Ex 1: A Tennis ball has diameter 6 cm . What is its surface area?


```
A}=\mp@subsup{A}{T}{}\mathrm{ Sphere }\quad\mp@subsup{A}{T}{}=\mp@subsup{A}{L}{}+\mp@subsup{A}{D}{
(Lareral Area) (only hemispheres have a base)
    2\pir}\mp@subsup{}{}{2}+\pi\mp@subsup{r}{}{2
```

Ex 2: A soccer ball with diameter 30 cm is placed tightly inside a cube box. Find the difference between their surface areas.

Ex 3: How many times greater is the SA of the Sun than the Earth?

6.2 Areas of Decomposable solids

Unfamiliar Solids can be broken down into simpler solids so that their area and volume can be calculated more easily.

When you have a decomposable solid:

1. Separate and identify the solids involved.
2. Write the formulas for all the areas involved.
3. Calculate them and add them together.
4. Watch out for hidden bases whose areas should not be included.

Ex 2: Activity 1 page 187

Note the hidden bases between the cone, cylinder, and the hemisphere.

Ex 1:

The solid shown below consists of a rectangular base pyramid joined to a rectangular base prism. The height of each lateral surface of the pyramid is 12 cm , and the prism's dimensions are 10 cm by 8 cm and a height of 6 cm . Find the total surface area.

Note the hidden base between

Ex 3: p. 189 \# 8
A hemisphere is placed on the flat surface of another hemisphere. What is, rounded to the nearest unit, the total area of this solid?

R

6.3 Volumes of Solids

Volume is the quantity of space that an object occupies
Capacity is the volume of the hollow part of an object.
A) The main unit of volume is the cubic meter $\left(\mathrm{m}^{3}\right)$. It corresponds to the space enclosed in a cube with edge 1 m .

B) The cubic decimetre $\left(\mathrm{dm}^{3}\right)$ corresponds to a cube with edge $1 \mathrm{dm}(10 \mathrm{~cm})$

C) $\quad 1 \mathrm{~m}^{3}=1 \mathrm{KL}$
$1 \mathrm{dm}^{3}=1 \mathrm{~L}$
$1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$

Examples

Convert each of the following:

1. $85 \mathrm{dm}^{3}=$ \qquad cm^{3}
2. $4560 \mathrm{~cm}^{3}=$ \qquad m^{3}
3. $0.65 \mathrm{dam}^{3}=$ \qquad dm^{3}
4. $4086 \mathrm{~m}^{3}=$ \qquad hm^{3}
5. $0.0169 \mathrm{hm}^{3}=$ \qquad mm^{3}

Convert each of the following:
6. $1 \mathrm{~m}^{3}=$ \qquad L
7. $7 \mathrm{dm}^{3}=$ \qquad L
8. $2.56 \mathrm{~L}=$ \qquad dm^{3}
9. $0.35 \mathrm{KL}=$ \qquad dm^{3}
10. $2400 \mathrm{~mL}=$ \qquad mm^{3}
11. $1 \mathrm{~cm}^{3}=$ \qquad $\mathrm{dm}^{3}=$ \qquad $\mathrm{L}=$ \qquad mL

Practice:
page 190 \# 2;
page 192 \# 9.

6.3-B- Volume of a Prism

Consider a pack of printer papers. With dimensions:

$$
\mathrm{I}=28 \mathrm{~cm} ; \mathrm{w}=21.5 \mathrm{~cm} ; \mathrm{h}=5 \mathrm{~cm}
$$

Area of one paper: $A=\operatorname{lw}=(28)(21.5)=602 \mathrm{~cm}^{2}$
The space this pack occupies (volume):
\square

$$
=(602)(5)=3010 \mathrm{~cm}^{3}
$$

If we shift the pack a little,
 the \# of papers (height) stays the same and so does the area of each paper.
Therefore the volume stays the same too.

$$
V_{\text {prism }}=A_{b} \bullet h
$$

Recall the AREA of (some possible bases):

1. Rectangle $=1 \cdot \mathrm{w}$
2. Square $=b^{2}$
3. Parallelogram $=b \bullet h$
4. Circle $=\pi r^{2}$
5. Triangle $=\frac{b \bullet h}{2}$
6. Trapezoid $=\left(\frac{B+b}{2}\right) \cdot h$
7. Rhombus $=\frac{D \bullet d}{2}$
8. Regular polygon $=\frac{P_{\text {base }} \bullet a}{2}$

Ex 2: Determine the volume of this prism

$$
\begin{aligned}
\mathrm{V}_{\text {cube }} & =\mathrm{A}_{\mathrm{b}} \cdot \mathrm{~h} \\
& =\mathrm{w}^{2} \cdot \mathrm{w} \\
\mathrm{~V}_{\text {cube }} & =\mathrm{w}^{3}
\end{aligned}
$$

Ex 3: Page 195 \#29
This tank is filled with 1500 L of gas. How much time will be required to fill the rest of it at a rate of $20 \mathrm{~L} / \mathrm{min}$?

$$
V_{\text {tank }}=A_{b} \bullet h
$$

Practice:

page 193 \# 17, 21, 22, 26, 28, 30

6.3-C- Volume of a Cylinder
 $\mathrm{V}_{\text {cylinder }}=\pi r^{2} \mathrm{~h}$

Ex 1: Determine the volume of this cylinder

$$
V=\pi r^{2} \cdot h
$$

$$
\mathrm{V}_{\mathrm{cyl} \text { linder }}=\pi \mathrm{r}^{2} \mathrm{~h}
$$

Ex 2: Find the volume of this hot air balloon
$\mathrm{D}=14 \mathrm{~m}$
$\mathrm{R}=7 \mathrm{~m}$
$\mathrm{H}=35 \mathrm{~m}$

Diameter $=14 \mathrm{~m}$
Height is 2.5 times the diameter

Ex 3: Determine the volume of material required to make a cd in $\underline{\mathrm{mL}}$

$r=19 \mathrm{~mm}$
$\mathrm{R}=60 \mathrm{~mm}$
$\mathrm{h}=4 \mathrm{~mm}$

Ex 4: page 196 \# 41
A triangular base prism is submerged in a cylindrical bucket of water with a 5 cm radius. The water level in the bucket rises 0.8 cm . What is the volume of the prism submerged in the water?

6.3-D- Volumes of Pyramids and Cones

The volume of any pyramid or cone is $1 / 3$ that of a prism of the same height and base.

$$
\mathrm{V}=\frac{A_{b} \bullet h}{3}
$$

$\mathrm{V}_{\text {pyramid }}=\frac{A_{b} h}{3} \quad \mathrm{~V}_{\text {cone }}=\frac{\pi r^{2} h}{3}$

$$
\mathrm{V}_{\text {pyramid }}=\frac{A_{b} h}{3}
$$

$$
\mathrm{V}_{\text {cone }}=\frac{\pi r^{2} h}{3}
$$

Ex 1: Find the volume

Ex 2 p. 198 \# 49

A square base pyramid trophy, has height 6 cm and its slant height is 10 cm . If it is made of aluminum and the mass of $1 \mathrm{dm}^{3}$ of aluminum is 2.7 Kg , calculate the mass of this trophy.

6 cm

$$
\mathrm{V}_{\text {pyramid }}=\frac{A_{b} h}{3}
$$

Practice:

page 198 \# 44,47,51
page 199 \# 52,56,

Ex 3: p. 199 \# 58
If Eric fills the plastic cup (shown below) to $\frac{3}{4}$ its capacity with lemonade, how much lemonade (in cl) will be poured into the cup?

6.3-E- Volume of a Sphere

$$
\begin{aligned}
\mathrm{V}_{\text {sphere }} & =2 \mathrm{~V}_{\text {cone }} \\
& =2\left(\frac{\pi r^{2} \cdot h}{3}\right) \\
& =2\left(\frac{\pi r^{2} \cdot 2 r}{3}\right) \\
& =\frac{4 \pi r^{3}}{3}
\end{aligned}
$$

$$
\mathrm{V}_{\text {sphere }}=\frac{4 \pi r^{3}}{3}
$$

$$
\mathrm{V}_{\text {sphere }}=\frac{4 \pi r^{3}}{3}
$$

Ex 1: Find the volume of the sphere with diameter 10 cm

Ex 2: Find the volume of the Earth in km^{3}

diameter= 12756 km
$r=6378 \mathrm{~km}$

Ex 3: p. 201 \# 73
The interior and exterior diameters of a metallic ball are 8 cm and 10 cm respectively. What is the ball's mass if the mass of $1 \mathrm{dm}^{3}$ of this metal is 3 Kg ?

6.4 Volume of decomposable solids

1. Separate and identify the solids involved.
2. Write the formulas for all the solids involved.
3. Calculate them and add them together.

Ex 1: Find the volume of this silo in KI:

Ex 2: Find the volume of this ice cream

 cone in ml :

Ex 3: Determine the volume of this space probe

SOLIDS	LATERAL AREA	TOTAL AREA	Volume
RIGHT PRISMS	$A_{\text {LAT }}=P_{B} \bullet h$	$A_{\text {TOT }}=P_{B} h+2 A_{B}$	$\mathrm{V}_{\text {prism }}=\mathrm{A}_{\mathrm{b}} \bullet \mathrm{h}$
RIGHT CYLINDERS	$A_{\text {LAT }}=2 \pi r h$	$\mathrm{A}_{\text {тот }}=2 \pi \mathrm{rh}+2 \pi \mathrm{r}^{2}$	$\mathrm{V}_{\text {cylinder }}=\pi r^{2} \bullet h$
RIGHT REGULAR PYRAMIDS	$\mathrm{A}_{\text {LAT }}=\frac{P_{b} s}{2}$	$\mathrm{A}_{\text {TOT }}=\frac{P_{b} s}{2}+\mathrm{A}_{\mathrm{b}}$	$\mathrm{V}_{\text {pyramid }}=\frac{A_{b} \bullet h}{3}$
RIGHT CONES	$A_{\text {LAT }}=\pi r s$	$\mathrm{A}_{\text {тот }}=\pi r s+\pi r^{2}$	$\mathrm{V}_{\text {cone }}=\frac{\pi r^{2} \cdot h}{3}$
SPHERES	$\mathrm{A}_{\text {LAT }}=$	$\mathrm{A}_{\text {TOT }}=4 \pi \mathrm{r}^{2}$	$\mathrm{V}_{\text {sphere }}=\frac{4 \pi r^{3}}{3}$
HEMISPHERE	$A_{\text {LAT }}=$ Note: if the bas	$\mathrm{A}_{\text {Тот }}=2 \pi \mathrm{r}^{2}$ se is included, add πr^{2}	$\mathrm{V}_{\text {sphere }}=\frac{2 \pi r^{3}}{3_{5}}$

Practice:
page 203 \# 1,2,7,8

6.5 Missing measures of a solid

Sometimes... we know the Volume or Surface Area of an object and we need to find the radius, height or side length.

When looking for a missing measure of a solid:

1. choose and write down the applicable formula based on the information given
2. substitute in all known values
3. solve for the unknown value

Ex 1: Find the radius of the sphere

$\mathrm{V}=2028 \pi \mathrm{~cm}^{3}$

Ex 2: Find the height of the cylinder

$\mathrm{A}_{\mathrm{T}}=26.39 \mathrm{~m}^{2}$
$r=1.2 \mathrm{~m}$

Ex 3: Find the side length of the cube

$$
\mathrm{V}=185.2 \mathrm{~cm}^{3}
$$

Ex 4: Find the radius of the cylinder

$\mathrm{V}=124181 \mathrm{~cm}^{3}$
$\mathrm{h}=122 \mathrm{~cm}$

Ex 5: Find the side length of the cube

$A_{T}=294 \mathrm{~cm}^{2}$

