Metric System Conversions

<u>Mass (g = gram)</u>

6.1- A- Areas of Prisms and Cylinders

For every solid we can find two types of areas:

- Lateral area (A_L): area of lateral faces-no base(s)
- Total area (A_T) : area of lateral faces and base(s)

Formulas:

	A _L (Lateral Area)	$A_{\rm T} = A_{\rm L} + 2A_{\rm b}$	
		(IUlai Alea)	
Cubes	4w ²	6w ²	
Prisms	P _b h	$P_{b}h + 2A_{b}$	
Cylinders	$2\pi rh$ or πdh	$2\pi rh + 2\pi r^2$	
		1	

Ex 1: Find the total area

Prisms P_bh $P_bh + 2A_b$ CylindEx 2: Page 178 # 4)Ex 3: 3 cm $A_T = P_bh + 2A_b$ 3 cm 8 cm			rea)	(Area total
Ex 2: Page 178 # 4) $A_T = P_b h + 2A_b$ S_{em} Ex 3: S_{em}	ers	$2\pi rh$ or	πdh	$2\pi rh + 2\pi r$
$A_{T} = P_{b}h + 2A_{b}$	P.181 # 14b))		
3-4-5 pythagorean triple If d = 5. Then r =	8.4 cm 2.7 cm			

	A _L (Lateral Area)	$A_T = A_L + 2A_b$ (Area total)
Prisms	P _b h	$P_{b}h + 2A_{b}$

Practice: page 178 # 5,8,9,10 page 181 # 14

Ex 4: Find the total surface area of this prism

$$A_{T} = P_{b}h + 2A_{b}$$

 $= A_L + 2A_I$ Area total)

Do and Hand in: page 179 # 11,13 page 181 # 15,16,17

A_L $A_T = A_T$ (Lateral Area)(Area)Pyramid $\frac{P_b s}{2}$ $\frac{P_b s}{2}$	+ A _b + A _b Pyramid	$\frac{A_{L}}{(Lateral Area)} \qquad \begin{array}{c} A_{T} = A_{L} + A_{b} \\ (Area total) \\ \hline \\ $
Ex 2: P. 182 # 18c)	Ex 3: P. 182 # 22	$\mathbf{A}_{\mathrm{T}} = \mathbf{A}_{\mathrm{L} \mathrm{BIG} \mathrm{PYR}} - \mathbf{A}_{\mathrm{L} \mathrm{Small} \mathrm{pyr}} + \mathbf{A}_{\mathrm{uppe}}$
	3	

Practice: page 182 # 18, 20, 21, 23,24,25

Ex 2: A soccer ball with diameter 30 cm is placed tightly inside a cube box. Find the difference between their surface areas.

	(Lateral Area)	(only hemispheres have a base)
	$4\pi r^2$	$2\pi r^2 + \pi r^2$
-		

Ex 3: How many times greater is the SA of the Sun than the Earth?

Practice: page 185 # 37 to 42

6.2 Areas of Decomposable solids

Unfamiliar Solids can be broken down into simpler solids so that their area and volume can be calculated more easily.

When you have a decomposable solid:

- 1. Separate and identify the solids involved.
- 2. Write the formulas for all the areas involved.
- 3. Calculate them and add them together.
- 4. Watch out for hidden bases whose areas should not be included.

Ex 2: Activity 1 page 187

BASIC FORMULAS

SOLIDS	LATERAL AREA	TOTAL AREA
RIGHT PRISMS	$A_{LAT} = P_B \bullet h$	$A_{TOT} = A_{LAT} + 2A_{B}$
RIGHT CYLINDERS	A _{LAT} = 2πrh = πdh	$A_{TOT} = 2\pi rh + 2\pi r^2$ $= \pi dh + 2\pi r^2$
RIGHT REGULAR PYRAMIDS	$A_{LAT} = \frac{P_b s}{2}$	$A_{\rm TOT} = A_{\rm LAT} + A_{\rm b}$
RIGHT CONES	A _{LAT} = πrs	$A_{TOT} = \pi rs + \pi r^2$
SPHERES	$A_{LAT} = A_{TOT} = 4\pi r^2$	
HEMISPHERE	$A_{LAT} = 2\pi r^2$	$A_{TOT} = 3\pi r^2$

Ex 1:

The solid shown below consists of a rectangular base pyramid joined to a rectangular base prism. The height of each lateral surface of the pyramid is 12 cm, and the prism's dimensions are 10 cm by 8 cm and a height of 6 cm. Find the total surface area.

Note the hidden base between the pyramid and the prism.

Ex 3: p. 189 # 8

A hemisphere is placed on the flat surface of another hemisphere. What is, rounded to the nearest unit, the total area of this solid?

Practice: Page 188 # 2-6,11

6

6.3-D- Volumes of Pyramids and Cones

The **volume** of any **pyramid** or cone is 1/3 that of a prism of the same height and base.

$$V = \frac{A_b \cdot h}{3}$$

A square base pyramid trophy, has height 6 cm and its

mass of 1 dm³ of aluminum is 2.7 Kg, calculate the

10 cm

slant height is 10 cm. If it is made of aluminum and the

 $V_{\text{pyramid}} = \frac{A_b h}{3}$

 $V_{pyramid} = \frac{A_b h}{3}$

Ex 2 p. 198 # 49

mass of this trophy.

6 cm

$$V_{\text{cone}} = \frac{\pi r^2 h}{3}$$

$$V_{\text{pyramid}} = \frac{A_b h}{3}$$

$$V_{\rm cone} = \frac{\pi r^2 h}{3}$$

Ex 1: Find the volume

Ex 3: p. 199 # 58

If Eric fills the plastic cup (shown below) to $\frac{3}{4}$ its capacity with lemonade, how much lemonade (in cl) will be poured into the cup?

Practice: page 198 # 44,47,51 page 199 # 52,56,

page 200 # 59(a,b),64,68,70,72

6.4 Volume of decomposable solids

- 1. Separate and identify the solids involved.
- 2. Write the formulas for all the solids involved.
- 3. Calculate them and add them together.

Ex 1: Find the volume of this silo in KI:

Ex 2: Find the volume of this ice cream cone in ml:

Ex 3: Determine the volume of this space probe

SOLIDS	LATERAL AREA	TOTAL AREA	Volume
RIGHT PRISMS	$A_{LAT} = P_B \bullet h$	$A_{TOT} = P_B h + 2A_B$	$V_{prism} = A_b \bullet h$
RIGHT CYLINDERS	A _{LAT} = 2πrh	$A_{TOT} = 2\pi rh + 2\pi r^2$	$V_{cylinder} = \pi r^2 \bullet h$
RIGHT REGULAR PYRAMIDS	$A_{LAT} = \frac{P_b s}{2}$	$A_{TOT} = \frac{P_b s}{2} + A_b$	$V_{\text{pyramid}} = \frac{A_b \cdot h}{3}$
RIGHT CONES	$A_{LAT} = \pi rs$	$A_{TOT} = \pi rs + \pi r^2$	$V_{\text{cone}} = \frac{\pi r^2 \cdot h}{3}$
SPHERES	$A_{LAT} = A_{TOT} = 4\pi r^2$		$V_{\text{sphere}} = \frac{4\pi r^3}{3}$
HEMISPHERE	$A_{LAT} = A_{TOT} = 2\pi r^2$ Note: if the base is included, add πr^2		$V_{\text{sphere}} = \frac{2\pi r^3}{3}_{5}$

Practice: page 203 # 1,2,7,8

6.5 Missing measures of a solid

Sometimes... we know the Volume or Surface Area of an object and we need to find the <u>radius</u>, <u>height</u> or <u>side</u> length.

When looking for a missing measure of a solid: 1. choose and write down the applicable

formula based on the information given 2. substitute in all known values

3. solve for the unknown value

Ex 1: Find the radius of the sphere

 $V=2028\pi$ cm³

Ex 3: Find the side length of the cube Ex 2: Find the height of the cylinder A_T=26.39 m² V=185.2 cm³ r= 1.2 m Ex 5: Find the side length of the cube Ex 4: Find the radius of the cylinder ß $A_{T}=294 \text{ cm}^{2}$ V= 124181 cm³ h=122 cm Practice page 205 # 1, 7, 18, 23, 27, 28, 35